Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(ok(X)) → top(active(X))
Used ordering:
Polynomial interpretation [25]:
POL(2nd(x1)) = 2·x1
POL(active(x1)) = 2·x1
POL(cons(x1, x2)) = x1 + x2
POL(from(x1)) = 2·x1
POL(mark(x1)) = x1
POL(ok(x1)) = 1 + 2·x1
POL(proper(x1)) = x1
POL(s(x1)) = x1
POL(top(x1)) = 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
2nd(mark(X)) → mark(2nd(X))
from(mark(X)) → mark(from(X))
top(mark(X)) → top(proper(X))
Used ordering:
Polynomial interpretation [25]:
POL(2nd(x1)) = 2·x1
POL(active(x1)) = 2·x1
POL(cons(x1, x2)) = 1 + x1 + x2
POL(from(x1)) = 2 + 2·x1
POL(mark(x1)) = 1 + x1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
POL(s(x1)) = x1
POL(top(x1)) = x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
s(ok(X)) → ok(s(X))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
s(ok(X)) → ok(s(X))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
active(2nd(X)) → 2nd(active(X))
proper(2nd(X)) → 2nd(proper(X))
Used ordering:
Polynomial interpretation [25]:
POL(2nd(x1)) = 1 + x1
POL(active(x1)) = 2 + 2·x1
POL(cons(x1, x2)) = x1 + x2
POL(from(x1)) = x1
POL(mark(x1)) = 2 + x1
POL(ok(x1)) = 2·x1
POL(proper(x1)) = 2·x1
POL(s(x1)) = x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
s(ok(X)) → ok(s(X))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
s(ok(X)) → ok(s(X))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
proper(from(X)) → from(proper(X))
Used ordering:
Polynomial interpretation [25]:
POL(active(x1)) = 2·x1
POL(cons(x1, x2)) = x1 + x2
POL(from(x1)) = 1 + x1
POL(mark(x1)) = 1 + x1
POL(ok(x1)) = 2·x1
POL(proper(x1)) = 2·x1
POL(s(x1)) = x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
s(ok(X)) → ok(s(X))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
s(ok(X)) → ok(s(X))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
active(s(X)) → s(active(X))
proper(s(X)) → s(proper(X))
Used ordering:
Polynomial interpretation [25]:
POL(active(x1)) = 2 + 2·x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(from(x1)) = 2·x1
POL(mark(x1)) = x1
POL(ok(x1)) = x1
POL(proper(x1)) = 2·x1
POL(s(x1)) = 1 + x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
s(ok(X)) → ok(s(X))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
s(ok(X)) → ok(s(X))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
Used ordering:
Polynomial interpretation [25]:
POL(active(x1)) = 2 + 2·x1
POL(cons(x1, x2)) = 1 + x1 + x2
POL(from(x1)) = 2·x1
POL(mark(x1)) = 1 + x1
POL(ok(x1)) = x1
POL(proper(x1)) = 2·x1
POL(s(x1)) = x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
active(from(X)) → mark(cons(X, from(s(X))))
Used ordering:
Polynomial interpretation [25]:
POL(active(x1)) = 1 + 2·x1
POL(cons(x1, x2)) = x1 + x2
POL(from(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = 2 + 2·x1
POL(s(x1)) = x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
Used ordering:
Polynomial interpretation [25]:
POL(cons(x1, x2)) = 2 + 2·x1 + 2·x2
POL(mark(x1)) = 1 + x1
POL(ok(x1)) = 1 + x1
POL(s(x1)) = 2 + 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RisEmptyProof
Q restricted rewrite system:
R is empty.
Q is empty.
The TRS R is empty. Hence, termination is trivially proven.